

FOR TORSIONAL STRAIN  $\emptyset$ ,  $TAN \ \emptyset = \frac{dx}{dy} \ ,$ 

OR , TO A FIRST APPROXIMATION ,

WHERE T IS THE LIMITING RADIUS .

SUBSTITUTING  $\omega$  FOR  $\frac{\varphi}{h}$  , AND DEFINING TORSIONAL SHEAR STRENGTH AS ,

WHERE G IS THE MODULUS OF RIGIDITY,

WE HAVE

THE MOMENT ABOUT THE DISK AXIS IS

$$= G \omega r^2 dA$$
.

TAKING THE MOMENT OVER THE CROSS SECTION OF THE DISK,

WE HAVE

$$M = 2\pi \int_{0}^{\pi} G \omega r^{3} dr.$$

SUBSTITUTING  $\mathcal{T} = G \omega r$ ,

$$M = 2 \pi \int_{0}^{r_{m}} T r^{2} dr,$$

$$M = \frac{2 \pi r^3 \tau}{3},$$

$$M = \frac{\pi G \omega r_{r}^{4}}{2}.$$

SUBSTITUTING 
$$\tau = G \omega r$$
,

$$M = \frac{\pi T r^3}{2},$$

AND 
$$\tau_m = \frac{2 M}{\pi r^3}$$
.